PRODUCCIÓN DE VARIOS CULTIVOS FORRAJEROS DE INVIERNO QUE INCORPORAN LEGUMINOSAS Y EFECTO EN EL MAÍZ POSTERIOR

M.D. BÁEZ BERNAL, M.I. GARCÍA POMAR, C. GILSANZ REY, A. LOURO LÓPEZ, V. GARCÍA SOUTO, J.F. CASTRO INSUA
Dpto. de Pastos y Cultivos. CIAM-INGACAL. Apdo. 10, 15080, A Coruña;España.
Correspondencia:dolores.baez.bernal@xunta.es

Abstract

RESUMEN En un experimento de media duración (cinco años) se ensayaron cuatro rotaciones intensivas basadas en monocultivos de invierno: raigrás italiano y trébol encarnado, y mezclas de gramíneas/leguminosas de estas dos especies y de triticale-guisante forrajero junto al maíz como cultivo de verano. El objetivo fue analizar, desde el punto de vista productivo y de extracción de nitrógeno el tipo de cubierta invernal así como el efecto en el maíz cultivado posterior a tales cultivos. Los resultados demuestran que la incorporación del trébol encarnado, o la mezcla guisante forrajero/triticale, en rotación con el maíz incrementan la producción y la extracción de nitrógeno en el cultivo de maíz respecto a una rotación convencional basada en raigrás italiano-maíz. Además, considerando la rotación completa, incrementan la capacidad de extracción de N con menos aporte de N , por tanto, son alternativas beneficiosas de cara a optimizar la cantidad de proteína generada.

Palabras clave: Raigrás italiano, trébol encarnado, guisante-triticale, fertilización mineral

SUMMARY

In a crop experiment of five years with intensive forage rotations based on maize as a summer crop, four winter crops were tested: monocultures of Italian ryegrass and crimson clover, the mixture of those species and the mixture of pea-triticale. The aim of the present work was to analyze, from the point of view of yield and extraction of nitrogen, the different winter crops and their effects on subsequent maize. The incorporation of a legume in monoculture like crimson clover, or in the mixture of pea-triticale increased dry matter yield and nitrogen uptake in the subsequent maize, compared to ryegrass-maize rotation. Moreover, these rotations extracted more nitrogen (protein) with less mineral N fertilization.

Key words: Italian ryegrass, crimson clover, pea-triticale, mineral fertilization

INTRODUCCIÓN

Consecuencia de la especialización e intensificación ganadera acontecida en Galicia en los últimos años los balances de nutrientes en las explotaciones de vacuno de leche, nitrógeno (N), fósforo y potasio, suelen ser elevados y desajustados, hecho que demuestra elevados inputs derivados de la alimentación del ganado y de la utilización en exceso de fertilizantes minerales. Los factores clave identificados para optimizar los balances son: reducir la aplicación de fertilizantes minerales en los cultivos, utilizar eficientemente los purines generados e, incrementar en la propia explotación la utilización de los recursos forrajeros propios. En este sentido, el crecimiento de especies leguminosas en los pastos puede aumentar el contenido de proteína en la ración de los animales y es un factor clave para incorporar N vía fijación de N_{2} atmosférico reduciendo de esta forma la utilización de fertilizantes minerales en los cultivos.

Por otra parte, el maíz es un cultivo de verano muy extendido en Galicia (Fernández-Lorenzo et al., 2014); el establecimiento de un cultivo de invierno en rotación con este cultivo permite maximizar la producción forrajera (Báez, 1999). La rotación maiz-cultivo de invierno es una oportunidad para el crecimiento de leguminosas o mezclas gramíneas/leguminosas. Además, está descrito que la descomposición de las raíces y residuos de las leguminosas pueden influir en gran medida a los procesos de mineralización del N y por lo tanto al contenido de N mineral en el suelo.

Aunque son bastantes los trabajos llevados a cabo a lo largo de la Cornisa Cantábrica estudiando las rotaciones forrajeras en las condiciones de la España Húmeda (Báez, 1999; Flores et al., 2011; González et al., 2014; Botana et al., 2016; Baizán et al., 2016) se detecta una falta de información en el conocimiento de los procesos y transformaciones del N a más largo plazo. En este sentido, el objetivo del trabajo es determinar a medio plazo (cinco años) aquellas prácticas agronómicas más favorables en cuanto a cubierta invernal y su interacción con la fertilización aplicada al maíz posterior con el fin de optimizar los niveles productivos y de extracción de N en rotaciones de cubiertas invernales en monocultivo y con mezclas de gramíneas/leguminosas.

MATERIAL Y MÉTODOS

El ensayo se inició en otoño de 2011 en una parcela experimental del CIAM (Abegondo, A Coruña, zona costera atlántica de Galicia a 97 m de altitud, latitud $43^{\circ} \mathrm{N}$, longitud: $8^{\circ} \mathrm{O}$) con la siembra de cuatro cultivos de invierno: raigrás italiano alternativo (RG: Lolium multiflorum L., cv Promenade, dosis $40 \mathrm{~kg} / \mathrm{ha}$), trébol encarnado (TE: Trifolium incarnatum L., cv Viterbo, dosis 30 $\mathrm{kg} / \mathrm{ha}$, excepto en el segundo año cv Contea) y las mezclas de raigrás italiano/trébol encarnado de las mismas especies (RG-TE: dosis $10 \mathrm{~kg} / \mathrm{ha}$ de RG y $30 \mathrm{~kg} / \mathrm{ha}$ de TE) y triticale/guisante (TR-GU: x triticosecale Witt, cv Colegiale, dosis 70 kg/ha y Pisum sativum L., cv Gracia, dosis $125 \mathrm{~kg} / \mathrm{ha}$, excepto en el último año cv Forrimax). El diseño experimental fue en bloques al azar, con 4 repeticiones, y un tamaño de parcela elemental de $24 \mathrm{~m} \times 15 \mathrm{~m}$. Las siembras de los cultivos de invierno se efectuaron entre el 14 de octubre y el 23 de noviembre los años más tardíos, y la cosecha entre el 23 de abril y el 18 de mayo. El análisis inicial del suelo ($0-15 \mathrm{~cm}$) presentó una textura franco limosa, con un contenido en C de $32,7 \mathrm{~g} / \mathrm{kg}$ de MS , de N de $2,23 \mathrm{~g} / \mathrm{kg}$ de MS y una relación C / N de 10 . Previo a la siembra todos los cultivos de invierno recibieron una fertilización de fondo de: $50 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}, 100$ $\mathrm{kg} \mathrm{P}_{2} \mathrm{O}_{5} /$ ha y $100 \mathrm{~kg} \mathrm{~K}_{2} \mathrm{O} / \mathrm{ha}$, y a lo largo del crecimiento de los cultivos de invierno sólo el cultivo de RG recibió un aporte de $60 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (Nitrato Amónico Cálcico 27\%) tras el corte efectuado en el mes de marzo.

Una vez cosechados los cultivos de invierno cada verano entre los años 2012 y 2016 se sembró maíz (cv LG 33.85). La parcela elemental fue dividida en dos sub-parcelas (tamaño de sub-parcela: de $60 \mathrm{~m}^{2}$), y para cada cultivo de invierno precedente se aplicaron dos tratamientos en el maíz: uno de fertilización mineral aplicado en dos aportes, $60 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (Nitrato Amónico Cálcico 27\%) en siembra y $100 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$ (Nitrato Amónico Cálcico 27\%) cuando el maíz tenía cinco hojas y, un tratamiento control que no recibió aporte de N. Previamente a la siembra se aportó $100 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$ y $250 \mathrm{~kg} \mathrm{~K}{ }_{2} \mathrm{O} / \mathrm{ha}$ de acuerdo a las analíticas de suelo realizadas. Las siembras se efectuaron a finales de mayo todos los años y las cosechas a finales de septiembre cuando el grano alcanzó un estado pastoso-vítreo. En este momento se muestrearon en dos líneas centrales una longitud de 8 m . En campo, se pesó la producción en fresco y se tomó una muestra de 10 plantas de cada línea, que fueron procesadas de forma independiente. En el laboratorio se separó la mazorca de la parte verde (tallos, hojas y espatas) picando las dos fracciones por separado. De cada línea se tomó una submuestra de 300 g que fueron secadas en estufa de aire forzado durante 18 horas a $80^{\circ} \mathrm{C}$, con el fin de calcular la producción de MS de mazorca, de parte verde y total. Posteriormente, se molieron
con un tamiz de 1 mm (Christy y Norris 8) y fueron analizadas para determinar el N por vía húmeda mediante digestión micro Kjeldahl seguida de la determinación colorimétrica del ión amonio, según el método descrito por Castro et al (1990) adaptado al autoanalizador de flujo continuo AAIII (BranLuebbe, Inc., Technicon Industrial Systems Gorp., Tarrytown, NY, EEUU).

El análisis estadístico de los datos se llevó a cabo mediante análisis de la varianza para un diseño de parcela dividida completamente aleatorio considerando la parcela principal el cultivo de invierno y la sub-parcela el tipo de fertilización en el maíz. Se utilizó el paquete estadístico SPSS (15.0) y para la separación de medias el test de Duncan utilizando un nivel de significación p<0,05.

RESULTADOS Y DISCUSIÓN

Cultivos de invierno

Las producciones de MS para los diferentes cultivos de invierno se muestran en la tabla 1. El último año no se pudieron realizar los controles productivos en la mezcla de TR-GU por un ataque de roya. Se observa una gran variabilidad productiva entre los años estudiados, resultado en gran parte por las diferencias climatológicas observadas durante los meses de crecimiento, desde noviembre a abril (Figura 1). El primero (2011-2012) y el último año (2015-2016) fueron los más productivos para el RG, y por el contrario, para el TE el año más favorable fue el segundo.

Excepto en el tercer año, el tipo de cubierta invernal afectó de forma significativa la producción de MS obtenida. Entre los monocultivos el RG fue el más productivo excepto el segundo año, y en lo que se refiere a las mezclas, con la de RG-TE se alcanzaron los rendimientos más favorables. Teniendo en cuenta los valores medios obtenidos en los cinco años ensayados, el TE produjo un 22% menos que el RG en monocultivo, y considerando las mezclas el TR-GU un 11% menos que el RG-TE.

Figura 1. Precipitación y temperatura media mensual desde octubre de 2011 a septiembre de 2016.

En lo que se refiere a la extracción de \mathbf{N} (Tabla 2), excepto el primer año, el tipo de cubierta invernal la afectó de forma significativa. El monocultivo de TE extrajo mayor cantidad de N , en término medio el $43,4 \%$ más que el monocultivo de RG. Considerando las mezclas, la de TR-GU, también incrementó respecto al RG la extracción en un 23,6\%.

Tabla 1. Producción de materia seca ($\mathrm{kg} \mathrm{MS} / \mathrm{ha}$) para los diferentes cultivos de invierno en los cinco años de estudio.

CI	Producciones, kg MS/ha				
	Año 1	Año 2	Año 3	Año 4	Año 5
RG	7857a	4307c	5115	5064ab	7931a
TE	4628b	6149a	4272	4024c	4557b
RG-TE	7834a	5926a	5117	5532a	5090b
TR-GU	6321ab	5058b	5250	4452bc	-
Significación					
Cl	***	***	ns	*	***
FM	-	*	ns	ns	ns
CI*FM	-	*	ns	ns	ns

$\overline{\mathrm{CI}: ~ R G: ~ R a i g r a ́ s ~ i t a l i a n o, ~ T E: ~ T r e ́ b o l ~ e n c a r n a d o, ~ R G-T E: ~ M e z c l a ~ R G+T E, ~ T R-G U: ~ M e z c l a ~ t r i t i c a l e+g u i s a n t e . ~}{ }^{2}$ Sig.:*** ($p<0,001$); ** ($p<0,01$); * ($p<0,05$); ns, no sig. Para cada parámetro valores seguidos por letras diferentes son significativamente diferentes a $\mathrm{p}<0,05$ test de Duncan.

Tabla 2. Extracción de N ($\mathrm{kg} \mathrm{N} / \mathrm{ha}$) para los diferentes cultivos de invierno en los cinco años de estudio.

	Extracciones, kg N/ha				
CI	Año 1	Año 2	Año 3	Año 4	Año 5
RG	108,5	$48,7 \mathrm{c}$	$61,7 \mathrm{c}$	$58,3 \mathrm{~b}$	$96,0 \mathrm{a}$
TE	128,8	$116,1 \mathrm{a}$	$100,7 \mathrm{a}$	$93,2 \mathrm{a}$	$96,3 \mathrm{a}$
RG-TE	91,7	$95,7 \mathrm{~b}$	$76,2 \mathrm{~b}$	$58,9 \mathrm{~b}$	$54,4 \mathrm{~b}$
TR-GU	115,3	$103,4 \mathrm{~b}$	$98,6 \mathrm{a}$	$51,7 \mathrm{~b}$	-
Significación					$* * *$
CI	ns	$* * *$	$* *$	ns	$* *$
FM	-	ns	ns	ns	
CI*FM	-	ns	ns	ns	

CI: RG: Raigrás italiano, TE: Trébol encarnado, RG-TE: Mezcla RG+TE, TR-GU: Mezcla guisante+triticale. ${ }^{2}$ Sig.: ${ }^{* * *}$ ($p<0,001$); ** ($p<0,01$); * ($p<0,05$); ns, no sig. Para cada parámetro valores seguidos por letras diferentes son significativamente diferentes a $p<0,05$ test de Duncan.

Cultivo de maíz

El cultivo de invierno precedente y la fertilización determinaron los rendimientos de MS en el maíz (Tabla 3), y excepto en el tercer año la interacción entre los dos factores no fue significativa. Los valores medios productivos de los cinco años oscilaron entre 5,8 y $9,2 \mathrm{t} \mathrm{MS} / \mathrm{ha}$ para los tratamientos no fertilizados y, entre 9,9 y $12,6 \mathrm{tMS} /$ ha cuando se aplicó $160 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$.

En los cinco años la respuesta fue positiva al aporte de N con un incremento medio de 3,9 $\mathrm{tMS} / \mathrm{ha}$, lo que supone un aumento de producción del 52% respecto al no aplicar fertilizante, respuesta bastante superior a otros trabajos realizados en la Cornisa Cantábrica y aportes de N mineral similares (Báez, 1999).

Tabla 3. Producción de materia seca ($\mathrm{kg} \mathrm{MS} / \mathrm{ha}$) en el maíz entre los años 2012 y 2016.

Cul Inv ${ }^{1}$ Precedente	Fertilizante Maíz ${ }^{2}$	Producciones, kg MS/ha					
		Año 1	Año 2	Año 3	Año 4	Año 5	Media
RG	0	6971	6226	7511	4728	4638	5776
TE	0	12090	8361	11442	8982	7898	9171
RG-TE	0	6772	7150	6947	4839	4303	5810
TR-GU	0	10954	8728	12002	8146	7299	9044
Media		9197	7616	9475	6674	6034	7450
RG	160	10397	9886	16400	7306	6060	9913
TE	160	13516	12068	16599	10929	9357	12238
RG-TE	160	11270	11504	16164	8175	6254	10524
TR-GU	160	13582	12599	18440	10507	8654	12551
Media		12191	11514	16901	9229	7581	11307
Significación							
CI		*	*	*	**	**	
FM		***	***	***	***	***	
CI*FM		ns	ns	*	ns	ns	

${ }^{1}$ Cul Inv: RG: Raigrás italiano, TE: Trébol encarnado, RG-TE: Mezcla RG+TE, TR-GU: Mezcla triticale+guisante. ${ }^{2}$ Fertilizante maíz: Nitrato Amónico Cálcico 27%. ${ }^{3}$ Sig.. ${ }^{* * *}$ ($p<0,001$); ** ($p<0,01$); * $(p<0,05)$; ns, no sig. Para cada parámetro valores seguidos por letras diferentes son significativamente diferentes a $p<0,05$ test de Duncan.

La mayor producción se observó tras el monocultivo de TE y la mezcla de TR-GU con un incremento, respecto al monocultivo de RG del 58% en los tratamientos no fertilizados y del 25% en los fertilizados. La mezcla RG-TE apenas incrementó la producción obtenida tras el RG.

Tabla 4. Extracción de N (kg N/ha) en el maíz entre los años 2012 y 2016.

Cul Inv ${ }^{1}$ Precedente	Fertilizante Maíz ${ }^{2}$	Extracción de N, kg N/ha					
		Año 1	Año 2	Año 3	Año 4	Año 5	Media
RG	0	37,3	36,0	37,9	29,8	26,9	33,6
TE	0	76,4	46,1	67,7	55,2	40,1	57,1
RG-TE	0	35,9	38,1	36,8	29,2	22,6	32,5
TR-GU	0	58,3	50,3	63,1	49,0	38,1	51,8
Media		52,0	42,6	51,4	40,8	31,9	43,7
RG	160	80,0	63,8	124,8	68,7	37,0	74,8
TE	160	93,7	83,4	140,9	97,2	53,2	93,7
RG-TE	160	76,7	70,9	127,3	75,2	36,9	77,4
TR-GU	160	91,9	80,2	159,2	93,4	49,4	94,8
Media		85,6	74,6	138,1	83,6	44,1	85,2
Significación							
CI		**	ns	*	**	*	
FM		***	***	***	***	***	
CI*FM		*	ns	ns	ns	ns	

${ }^{1}$ Cul Inv: RG: Raigrás italiano, TE: Trébol encarnado, RG-TE: Mezcla RG+TE, TR-GU: Mezcla triticale+guisante. ${ }^{2}$ Fertilizante maíz: Nitrato Amónico Cálcico 27%. ${ }^{3}$ Sig.: ${ }^{* * * ~(~} p<0,001$); ** ($p<0,01$); * ($p<0,05$); ns, no sig. Para cada parámetro valores seguidos por letras diferentes son significativamente diferentes a $p<0,05$ test de Duncan.

Resultados similares a los obtenidos en producción se observaron en la extracción de N (Tabla 4). Las producciones y extracciones de N fueron muy bajas los dos últimos años coincidiendo con un mes de julio especialmente seco (Figura 1; 6,4 y $2 \mathrm{~L} / \mathrm{m}^{2}$ en 2015 y 2016 respectivamente). Considerando la rotación con RG como referencia, el TE y la mezcla TR-GU incrementaron la extracción de N en un 62% en los tratamientos no fertilizados y un 26% en los fertilizados. Por tanto, se pone de manifiesto la alta capacidad productiva de la rotación maíz-cultivo de invierno y el efecto beneficioso obtenido al incluir leguminosas como trébol encarnado y guisante en el cultivo de invierno.

CONCLUSIONES

Los resultados derivados de un experimento de media duración (cinco años), demuestran que la incorporación de leguminosas en monocultivo, como el trébol encarnado, o en mezclas como el guisante forrajero/triticale, en rotación con el maíz incrementan la producción y la extracción de nitrógeno en el cultivo de maíz posterior respecto a una rotación convencional basada en raigrás italiano-maíz. Además, considerando la rotación completa incrementan la extracción de N, por tanto, la capacidad de producción de proteína bruta anual.

AGRADECIMIENTOS

Trabajo parcialmente financiado por la Xunta de Galicia (proyecto 10MRU503001PR) y acciones de transferencia tecnológica (Consellería de Medio Rural): 2015/96 y 2016/119.

REFERENCIAS BIBLIOGRÁFICAS

Báez Bernal M.D. (1999) Evaluación de las pérdidas y transformaciones de nitrógeno en un sistema forrajero intensivo. Tesis doctoral, 282 pp. Universidad del País Vasco. Bilbao, España.

Baizán S., Vicente F., Celis D., Salvador Loreto I., González C., Modroño S. y Martínez-Fernández A. (2016) En un sistema de rotación anual de dos cultivos ¿influyen las leguminosas forrajeras de invierno en el rendimiento y la calidad del maíz forrajero?. En: Báez et al. (eds) Innovación Sostenible en Pastos: Hacia una Agricultura de Respuesta al Cambio Climático, pp. 99-104. Lugo-A Coruña, España: Sociedad Española para el Estudio de los Pastos.

Botana A., Valladares J., Pereira-Crespo S., Díaz N., Resch C., Fernández-Lorenzo B., Dagnac T., Veiga M. y Flores-Calvete G. (2016) Las mezclas de leguminosas anuales pueden mejorar la productividad de la rotación raigrás italiano-maíz forrajero. En: Báez et al. (eds) Innovación Sostenible en Pastos: Hacia una Agricultura de Respuesta al Cambio Climático, pp. 81-86. Lugo-A Coruña, España: Sociedad Española para el Estudio de los Pastos.

Castro P., González Quintela A., Prada Rodríguez D. (1990) Determinación simultánea de nitrógeno y fósforo en muestras de pradera. Actas de la XXX Reunión Científica de la SEEP, 200-207.San Sebastián, España: Sociedad Española para el Estudio de los Pastos.

Fernández-Lorenzo B., Flores G., Botana A., Resch C, Dagnac T., Veiga M., Pereira S.y Lorenzana R. (2016) Estrutura produtiva e sistemas de alimentación das explotacións leiteiras de Galicia. Afriga, 124, 98-113.

Flores G., Díaz N., Valladares J., Fernández B., González A., Bande M.J., Pereira S., Resch C., Rodríguez X., y Piñeiro J. (2011) Leguminosas anuais en asociación con raigrás italiano como cultivo invernal nas rotacións forraxeiras intensivas. Afriga, 94, 86-98.
González M.A., Vicente F., de la Roza-Delgado B., Soldado A., Modroño S., González C., Jaimez A.S. y Martínez-Fernández A. (2014) Evaluación de nuevos cultivos invernales como alternativa al raigrás italiano en rotaciones forrajeras adaptadas a zonas templado húmedas del norte de España. En: Busqué J. et al. (eds) Pastos y PAC 2014-2020, pp. 312-318. Potes (Cantabria), España: Sociedad Española para el Estudio de los Pastos.

